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All neural information resulting from chemical stimulation of taste
buds in the oral cavity, pharynx and larynx travels via the facial
(VII), glossopharyngeal (IX) and vagus (X) nerves to terminate in
the nucleus of the solitary tract (NST) in the brainstem. The NST is
responsible for initial processing and distribution of chemosensory
information. At higher relays in the central nervous system the pro-
cesses of detection, discrimination and affective responses occur
resulting in the sensation we call taste and the behavioral reactions to
that sensation. In addition, the NST connects to efferent motor
systems involved in oral facial motor reflexes and systems controlling
the initiation and flow of saliva. Thus, the NST plays a pivotal role
in the neural processing of chemosensory information derived from
stimulation of taste buds.

Beginning in 1961 (Pfaffmann et al., 1961) a large number of inves-
tigators in different laboratories have examined the NST using
anatomical, and neurophysiological techniques. The topographical
projections of the VII, IX and Xth nerves conveying sensory infor-
mation to the NST have been determined using different methods in
several species (Torvik, 1956; Norgren, 1981; Whitehead and Frank,
1983; Hamilton and Norgren, 1984). The morphology of the NST
has been studied and the neuronal architecture defined (Whitehead,
1988). Neurons in the NST have been described as belonging to three
major anatomical types—multipolar, elongate and ovoid (White-
head, 1988; Lasiter and Kachele, 1988; King and Bradley, 1994;
Mistretta and Labyak, 1994), and using immunocytochemistry the
presence of GABA and other neuropeptides has been described
(Lasiter and Kachele, 1988; Barry et al., 1993).

Responses of NST neurons to chemical stimuli applied to the
tongue have also been examined many times in different species (e.g.
Doetsch and Erickson, 1970; Hill et al., 1983; Smith et al., 1983a).
Because stimulation is almost always restricted to the anterior 2/3 of
the tongue, only neurons with input from the VIIth nerve have been
extensively characterized. Moreover, because the recordings have
been accomplished with extracellular electrodes, the type of neuron
and its projection pattern are often undetermined. Thus, it is not
known if the NST neurons recorded from send information rostrally,
or to brainstem areas, or to both terminations. Regardless, these
neurons are invariably called ‘taste neurons’ presumably because the
information passed on will result in a taste perception. However,
these so called ‘taste neurons’ could be interneurons involved in local
circuits, neurons involved in reflex muscle activity, or neurons
involved in salivary secretion. Despite the problem of knowing
exactly what a particular neuron that receives input from taste buds
actually does with that information, the assumption is made that
they are involved in taste sensation. Furthermore, despite this lack of
basic knowledge of the role of these NST neurons in chemosensory
processing, theories of their roles in taste coding have been formu-
lated ( e.g. Smith et al., 1983b; Di Lorenzo and Lemon, 2000).

It is obvious therefore that to make progress in understanding
sensory processing at the level of the NST more information is
needed about the network of neurons in the NST that process chem-
osensory information derived from stimulating taste buds. In an
attempt to make progress we have made intracellular recordings in

horizontal brainstem slices of the NST. Using this methodology we
have been able to define that glutamate is the neurotransmitter
between the primary afferent synapse and the second order neurons
in the NST (Wang and Bradley, 1995), that GABA-mediated inhib-
ition plays a major role in synaptic processing by NST neurons
(Wang and Bradley, 1993; Grabauskas and Bradley, 1998) and that
neurons in the NST have different biophysical and repetitive
discharge characteristics (Bradley and Sweazey, 1992). Some of these
in vitro results have been confirmed in vivo (Li and Smith, 1997;
Smith and Li, 1998). More recently in an attempt to understand NST
circuits, we have examined neural elements of the gustatory–salivary
reflex circuit responsible for taste-initiated secretion of saliva,
assuming that this is a relatively simple circuit. The reflex is typified
by a high flow rate secretion of a bicarbonate-containing saliva in
response to sour or low pH stimulation of taste buds. The reflex
involves relatively few synapses and the overall details of the circuit
are well understood, making it amenable for the study of NST
circuits that process neural information originating in taste buds.
Our previous investigations of NST neurons and synaptic character-
istics of the NST have focused on the input circuit and now we are
concentrating on neurons of the output circuit.

Parasympathetic preganglionic neurons controlling the salivary
glands form a column of cells closely associated with the medial
border of the NST (Contreras et al., 1980). The most rostral exten-
sion of the salivatory nuclei innervating the submandibular and
sublingual salivary glands has been studied in some detail (Matsuo
and Kang, 1998; Mitoh et al., 2004). The caudal extension of this
column, the inferior salivatory nucleus (ISN), innervates the von
Ebner and parotid glands. While the general topography of the para-
sympathetic neurons is known, detailed analysis of their morphology
has only recently been studied (Kim et al., 2004). Neurons inner-
vating the parotid gland are significantly larger than those inner-
vating the von Ebner glands although the neurons innervating either
of these glands have similar repetitive discharge characteristics.
Measurements of the latency of response of postsynaptic potentials
(PSP) recorded from the ISN neurons indicate a multisynaptic
pathway between the primary afferent synapse and the ISN neurons.
In addition all the PSPs recorded are a mixture of both excitatory
and inhibitory activity. Recently we have examined the effect of a
number of neuropeptides on the ISN neurons and have found that
Substance P depolarizes and excites the ISN neurons.

These results indicate the complexity of the NST and suggest
caution in interpreting the role of the NST in coding before more
details of the network of neurons responsible for processing chem-
osenory information are available.
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